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The force-coupling method, previously developed for spherical particles suspended in a
liquid flow, is extended to ellipsoidal particles. In the limit of Stokes flow, there is an exact
correspondence with known analytical results for isolated particles. More generally, the
method is shown to provide good approximate results for the particle motion and the flow
field both in viscous Stokes flow and at finite Reynolds number. This is demonstrated
through comparison between fully resolved direct numerical simulations and results from
the numerical implementation of the force-coupling method with a spectral/hp element
scheme. The motion of settling ellipsoidal particles and neutrally buoyant particles in a
Poiseuille flow are discussed.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The development of microfluidic devices for sorting and analyzing particles has raised the need for effective simulation
methods to determine the motion of small particles in confined flow systems. A general overview of the development of mi-
cro-electromechanical systems (MEMS) is given by Ho and Tai [1] and examples of particle separation for biochemical and
biomedical analysis are given by Telleman et al. [2] and by Applegate et al. [3]. Often these devices involve complex geom-
etries and a range of conditions for Reynolds number, particle size, concentration and possibly body forces (e.g. magnetic
forces) acting on a particle. Magnetic fields, for instance, acting on super-paramagnetic beads provide a means for fabricating
self-assembled structures such as particle chains carried by liquids in micro-channels [4–6]. Particles may also be used to
promote mixing in micro-flows or to form the active element in pumping devices as shown experimentally by Terray et
al. [7] and by Bleil et al. [8], and in simulations by Liu et al. [9].

Most attention has focused to date on the motion of spherical particles and there are several procedures available [10]. In
the context of Stokes flows, Stokesian Dynamics [11,12],which is based on a truncated multipole expansion for the flow field,
has been successful in the study of suspension mechanics and systems of particles. More generally for finite Reynolds num-
ber flows one of the available approaches for direct numerical simulation is the arbitrary Lagrangian–Eulerian formulation in
conjunction with a finite element discretization, the so-called ALE scheme, see [13–15]. Here the numerical mesh conforms
to the body geometry and evolves as the particles move with the flow. Other approaches include the distributed Lagrange
multiplier (DLM) method and the lattice-Boltzmann method (LBM) [16,17]. DLM is a fictitious domain method based on vir-
tual particles that does not rely on the movement of an underlying numerical mesh to resolve the motion of the particles, see
[18,19]. LBM also employs a fixed computational grid and the influence of particles on the flow are interpolated back onto
the grid.
. All rights reserved.
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Another approach is the force-coupling method (FCM) developed by Maxey and Patel [20] and Lomholt and Maxey [21]
for both low Reynolds number flow and finite Reynolds number flows, see [22]. FCM is also a fictitious domain method and
relies on a low-order, finite force multipole expansion to represent the particles in the flow. The method has been compared
successfully against experiments [23] and tested against direct numerical simulations [22,24] for a variety of conditions.
FCM is computationally efficient and is able to accommodate large numbers of particles in fully three-dimensional flows,
with a moderate OðNPÞ increase in effort beyond that needed for the underlying flow solver. While the method does not fully
resolve the flow near each particle, it requires fewer grid points per particle than other schemes and provides reliable esti-
mates for the particle motion. In the context of Stokes flow, FCM also captures the Faxén corrections to the drag force in non-
uniform flows and the degenerate multipoles that are associated with the motion of rigid spherical particles.

The study of non-spherical particles, such as ellipsoids, has been more limited but is important for applications. Ellipsoids
in Stokes flows are representative of short fibers or short chains of beads in suspension and their translational motion in a
fluid is closely linked to their orientation [25]. Suspensions of ellipsoidal particles may spontaneously develop local inhomo-
geneities as they settle under gravity [26]. In a simple uniform shear flow, at low Reynolds numbers, ellipsoidal particles
undergo a periodic rotation, giving the well-known Jeffery orbits [27]. An ellipsoidal particle settling under gravity in a non-
uniform shear flow, however, may undergo a chaotic tumbling motion [28,29] due to the changes in settling motion with
orientation.

Claeys and Brady [30] have extended Stokesian Dynamics to investigate the dynamics of spheroids in a Stokes suspension.
Other studies of ellipsoidal particles in Stokes flow have generally been based on boundary integral formulations that resolve
in detail the flow about each particle [31–34]. Studies involving elliptic (two-dimensional) particles in finite Reynolds num-
ber flows have been made using LBM [35,36] or with ALE schemes [37]. Qi and Luo [38] have applied LBM to the motion of
three-dimensional spheroidal particles in Couette flow while Pan et al. [39] have extended DLM for the settling motion of an
ellipsoid, and Swaminathan et al. [40] have similarly used ALE methods.

A number of other simulation methods have been developed for particles in suspension. The Physalis scheme [41] for ri-
gid spherical particles relies on the existence of a local Stokes flow close to the particle surface, within some inner layer, that
may be used to match boundary conditions to flow variables in an outer numerical simulation. Immersed boundary methods
[42] have been developed for systems of rigid particles [43] and modified versions of DLM are available [44].

In this paper, we provide the extension of the force-coupling method for the motion of three-dimensional ellipsoidal par-
ticles. The method is derived first in the context of Stokes flow and compared with exact, analytical results for both open
systems and channels. The method is then tested for several flows at finite Reynolds numbers and compared with direct
numerical simulations. Of particular interest is the effect of wall boundaries on the motion. We also note the implementation
of the scheme with the spectral/hp element method for computing the flow and the use of penalty methods for converting
between resistance and mobility problems. Finally, some results are given for the tumbling motion of a pair of particles fall-
ing under gravity and for neutrally buoyant particles suspended in a shear flow.

2. FCM formulation

The force-coupling method [20,21] uses a set of finite force multipoles to represent the presence of each particle in the
flow and fluid is assumed to fill the whole flow domain, including the volume occupied by the particles. The flow is specified
in terms of a volumetric velocity field uðx; tÞ that is incompressible and satisfies
q
Du
Dt
¼ �rpþ lr2uþ fðx; tÞ; ð1Þ

r � u ¼ 0; ð2Þ

where q; p and l are the fluid density, pressure and viscosity, respectively. The source term fðx; tÞ represents the sum of
two-way coupling forces from each particle n centered at YðnÞðtÞ. The source term for a single particle has the form:
fiðx; tÞ ¼ FiDðx� YðtÞÞ þ Gij
@D0ðx� YðtÞÞ

@xj
; ð3Þ
where DðxÞ and D0ðxÞ are Gaussian distribution functions for the force monopole and dipole, respectively. For spherical par-
ticles the Gaussian envelope is isotropic in all directions and has the form
DðxÞ ¼ ð2pr2Þ�3=2 exp½�x2=2r2�; ð4Þ
where the length scale r for the force monopole is related to the particle radius a by
a=r ¼
ffiffiffiffi
p
p

: ð5Þ
Similarly, the length scale r0 for the force dipole is given by
a=r0 ¼ 6
ffiffiffiffi
p
p� �1=3

: ð6Þ
The strength F of the finite force monopole in (3) is set by the sum of the external forces Fext , such as a magnetic force or force
due to gravity, acting on the particle as well as the influence of inertia. If mP is the mass of the particle and mF is the mass of
displaced fluid then, typically,
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F ¼ Fext � ðmP �mFÞ
dV
dt
: ð7Þ
The second term in (3) is the force dipole of strength Gij, which has symmetric and antisymmetric components. The symmet-
ric, stresslet component of the force dipole Gij is set so that
Z

D

1
2

@ui

@xj
þ @uj

@xi

� �
D0ðx� YÞd3x ¼ 0; ð8Þ
consistent with the constraint of rigid body motion. The antisymmetric component of the force dipole corresponds to a tor-
que acting on the particle.

The velocity of each particle VðtÞ is evaluated from a volume integral of the fluid velocity using the monopole Gaussian
distribution function as
VðtÞ ¼
Z

D
uðx; tÞDðx� YðtÞÞd3x: ð9Þ
The angular velocity X of the particle is computed by a corresponding volume average of the vorticity xðx; tÞ with the dipole
Gaussian distribution function as
X ¼ 1
2

Z
D

xðx; tÞD0ðx� YðtÞÞd3x: ð10Þ
The new position of each particle is calculated from
VðtÞ ¼ dYðtÞ
dt

: ð11Þ
The extension for ellipsoidal particles requires a generalization of the Gaussian envelope function (4) to account for the
body shape. For an ellipsoid, centered at Y ¼ 0 with its principal axes aligned with the coordinate axes, the body surface is
x2
1

a2
1

þ x2
2

a2
2

þ x2
3

a2
3

¼ 1: ð12Þ
The Gaussian envelope is then
DðxÞ ¼ ð2pÞ�3=2ðr1r2r3Þ�1 exp �1
2

x2
1

r2
1

þ x2
2

r2
2

þ x2
3

r2
3

� �� �
: ð13Þ
As will be demonstrated, the length scale rk is related to the semi-axis ak exactly as in (5) for the force monopole. The length
scale r0k for the force dipole is similarly related to the semi-axis ak exactly as in (6). In the limit of three equal semi-axes this
matches the original formulation for the sphere (4).

The general orientation of an ellipsoid is specified by the orthogonal unit vectors mð1Þ; mð2Þ; mð3Þ for the three principal
semi-axes. These rotate with the rigid body as
dmðkÞ

dt
¼ X�mðkÞ: ð14Þ
The transformation between the fixed coordinate axes and the instantaneous semi-axes of an ellipsoid is specified by the
orthogonal matrix Q with components Qkn ¼ mðkÞn . The general form of the Gaussian envelope (13) is then
DðxÞ ¼ ð2pÞ�3=2ðr1r2r3Þ�1 exp �1
2

xT Q T

r�2
1 0 0
0 r�2

2 0
0 0 r�2

3

0
B@

1
CAQx

2
64

3
75: ð15Þ
The remaining aspects of the force-coupling method remain unchanged. The particle velocity V and the angular velocity X
are evaluated by (9) and (10) as before, and the constraint (8) is used to determine the stresslet coefficient. We next consider
the application of this reformulation for ellipsoidal particles to some canonical problems in Stokes flow to demonstrate that
this provides the correct extension of the force-coupling method.
3. Isolated particle in stokes flow

In the context of low Reynolds number Stokes flow, it is possible to derive analytical results for the motion of an isolated
spherical particle in an unbounded fluid domain. These results for both the flow and the resistance tensor, which relates the
force and torque on the particle to V and X, may be compared directly with corresponding analytical solutions of the FCM
equations [20,21]. These serve to validate FCM in the limit of a Stokes flow for isolated particles and to compare FCM results
for the near-field and far-field flows with the exact closed form solutions. Closed, analytical results for the flow field past an
ellipsoid are not available in any practical form. Theoretical results for the resistance tensor of a general ellipsoid are given by
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Lamb [45] in terms of elliptic integrals and explicit results can be obtained for a prolate or oblate spheroid, see[46,47]. While
the standard results are derived in a resistance format, the FCM results are obtained in a mobility formulation. We consider
here the motion of a spheroid and compare the analytical results from FCM with the known, explicit closed form solutions
and show that they are equivalent.
3.1. Settling of a spheroid

We consider first the motion of a particle in response to an applied force F. In general, the particle velocity is related to the
force by the mobility tensor M as
Vi ¼ MijFj: ð16Þ
More commonly, the motion is specified in terms of a resistance tensor K with
Fi ¼ KijVj ð17Þ
and for an axisymmetric particle with the symmetry axis given by the unit vector m this has the form
Kij ¼ K1mimj þ K2ðdij �mimjÞ: ð18Þ
Explicit results for the resistance coefficient K1 for motion parallel to the symmetry axis and K2 for motion transverse to the
axis are given by Happel and Brenner [46]. With a1 P a2 ¼ a3 and the aspect ratio k ¼ a1=a2, the resistance coefficients for a
prolate spheroid are
K1 ¼ 8pla2s3½ð2s2 þ 1Þ logðkþ sÞ � ks��1
;

K2 ¼ 16pla2s3½ð2s2 � 1Þ logðkþ sÞ þ ks��1
;

ð19Þ
where s2 ¼ jk2 � 1j and k P 1. For an oblate spheroid with k 6 1 and s2 ¼ jk2 � 1j,
K1 ¼ 8pla2s3½ð2s2 � 1Þ tan�1ðs=kÞ þ ks��1
;

K2 ¼ 16pla2s3½ð2s2 � 1Þ tan�1ðs=kÞ � ks��1
:

ð20Þ
The mobility tensor M for an ellipsoid can be evaluated from the force-coupling method. First the solution for the incom-
pressible flow at zero Reynolds number can be found from (1) as a Fourier transform
ûi ¼
1

lk2 dij �
kikj

k2

� �
f̂ j; ð21Þ
where the Fourier transform is defined as
ûiðk; tÞ ¼ ð2pÞ�3
Z

uiðx; tÞ expð�ik � xÞd3x ð22Þ
and k ¼ jkj. The particle velocity V is found from the convolution integral (9) and for a particle centered at Y ¼ 0 the velocity
is
Vi ¼ ð2pÞ3
Z

ûiðk; tÞbDðkÞd3k; ð23Þ
where bDðkÞ ¼ ð2pÞ�3 exp � k2
1r2

1 þ k2
2r2

2 þ k2
3r2

3

	 

=2

n o
when referred to the principal axes of the ellipsoid. The components

of the mobility tensor are then
Mij ¼
1

8p3l

Z
dij �

kikj

k2

� �
1

k2 exp � k2
1r

2
1 þ k2

2r
2
2 þ k2

3r
2
3

	 
n o
d3k: ð24Þ
This is a diagonal matrix and is characterized by the settling velocity in response to a force applied separately in turn to each
of the three principal axes. In each case, the velocity is then parallel to the force.

For an axisymmetric spheroid with the x1-axis chosen to be the symmetry axis, the length scales r2 and r3 are equal and
we set the ratio of the length scales as c ¼ r1=r2. The principal components M11 and M22 ¼ M33 can be evaluated by standard
methods from (24) as
M11 ¼ ð8lp3=2r2Þ�1
Z 1

�1
ð1� t2Þf1þ ðc2 � 1Þt2g�1=2 dt;

M22 ¼ ð16lp3=2r2Þ�1
Z 1

�1
ð1þ t2Þf1þ ðc2 � 1Þt2g�1=2 dt;

ð25Þ
where t ¼ k1=k. The values for a prolate spheroid, c > 1, are
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M11 ¼ ð8lp3=2r2Þ�1ðc2 � 1Þ�3=2fð2c2 � 1Þ logðcþ ½c2 � 1�1=2Þ � c½c2 � 1�1=2g;
M22 ¼ ð16lp3=2r2Þ�1ðc2 � 1Þ�3=2fð2c2 � 3Þ logðcþ ½c2 � 1�1=2Þ þ c½c2 � 1�1=2g:

ð26Þ
These results (26) may be compared with the values of 1=K1 and 1=K2 from (19). The two sets of results are identical pro-
vided the coefficients for the aspect ratios are equal, c ¼ k, and if a2 ¼ p1=2r2 exactly as in (5). In particular, we see that for
large aspect ratios k there is the usual 2:1 ratio in the settling velocities.

There is also an identical match for oblate spheroids under the same conditions. The integrals in (25) can be evaluated
using the change of variable sin z ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
for c < 1 to obtain results identical to (20) with M11 ¼ 1=K1 and M22 ¼ 1=K2.

Together these results confirm that the extended form of the Gaussian envelope (13) gives the appropriate generalization
for the force monopole term.

3.2. Rotation of a spheroid

A spheroidal particle will rotate in response to an applied external torque, vorticity in the surrounding ambient flow or a
local rate of strain in the ambient flow. This response is governed by the force dipole terms Gij. If there is no rate of strain in
the ambient flow and there is no external torque then no force dipole terms are induced and the particle rotates in response
to the local vorticity as given by (10). If there is a rate of strain in the ambient flow then stresslet terms are induced and the
particle rotates to align with the principal axes of the strain-rate. In a general shear flow there is a combination of these re-
sponses as seen in the well-known Jeffery orbits [27] for torque-free particles. The exact relation between the external tor-
que T, the angular velocity X of the spheroid and the ambient flow is given by
Ti ¼ l R1 Xj �
1
2
x1j

� �
mjmi þ R2 Xi �

1
2
x1i

� �
� Xj �

1
2
x1j

� �
mjmi

� �� �
� lR2D�ijkmjE

1
kl ml; ð27Þ
where D ¼ ðk2 � 1Þ=ðk2 þ 1Þ; x1i is the locally uniform vorticity, and E1ij is the locally uniform rate of strain. For a prolate
spheroid
R1 ¼
16
3

pa3
2s

3½ks� logðkþ sÞ��1
;

R2 ¼
16
3

pa3
2s

3ð1þ k2Þ½ð2s2 þ 1Þ logðkþ sÞ � ks��1
ð28Þ
with, as before, the aspect ratio k > 1; s2 ¼ jk2 � 1j and a2 the radius perpendicular to the axis of symmetry m. For an oblate
spheroid, k < 1,
R1 ¼
16
3

pa3
2s

3½tan�1ðs=kÞ � ks��1
;

R2 ¼
16
3

pa3
2s

3ð1þ k2Þ½ð2s2 � 1Þ tan�1ðs=kÞ þ ks��1;

ð29Þ
see [46].
When using the force-coupling method, the key step is to evaluate the velocity gradient averaged over the particle
Cij ¼
Z
@ui

@xj
D0ðx� YÞd3x ð30Þ
for the flow u(x,t) induced by the force dipole terms Gij. The angular velocity is then determined (10) as
Xi ¼
1
2
x1i þ

1
2
�ijkCkj: ð31Þ
In Stokes flow, the external torque T determines the antisymmetric terms of the force dipole as GA
ij ¼ 1

2 �ijkTk. The symmetric
stresslet components GS

ij are set so as to ensure that the net rate of strain averaged over the particle is zero (8),
1
2
ðCij þ CjiÞ þ E1ij ¼ 0: ð32Þ
The ‘mobility’ relation between Cij and Gij is found in the same manner as before from the Fourier transform of the flow (21)
and is
Cij ¼ AipjqGpq; ð33Þ
where
Aijkm ¼ �
1

8p3l

Z
dij �

kikj

k2

� �
kkkm

k2 exp � k2
1r
02
1 þ k2

2 þ k2
3

	 

r022

h in o
d3k: ð34Þ
The symmetry axis m has been taken be parallel to the x1-axis and the components are referred the principal axes of the
spheroid. We will assume that the ratio r01=r02 matches the aspect ratio k and that a2 and r02 are related as in (6). We will
then demonstrate that the results obtained for three canonical cases match the known exact results.
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In general Aijkm is an axisymmetric tensor. Further, from (34), the tensor Aijkm is symmetric with respect to the index pair
i; j and with respect to k; m. The tensor then has the general form
Aijkm ¼ a1dijdkm þ a2ðdikdjm þ dimdjkÞ þ a3dijmkmm þ a4ðdikmjmm þ dimmjmk þ djkmimm þ djmmimkÞ þ a5dkmmimj

þ a6mimjmkmm: ð35Þ
The coefficients are further restricted by the incompressibility condition that Aijim ¼ 0. These give
a1 þ 4a2 þ a4 ¼ 0;
a3 þ 5a4 þ a5 þ a6 ¼ 0:

ð36Þ
This ensures too that Aijkj ¼ 0 and that the trace of the stresslet has no effect on the particle motion. There are then four inde-
pendent coefficients that determine Aijkm. The details of their evaluation are given in the Appendix.

The first example is the rotation of a spheroid about the axis of symmetry, with no ambient flow, under the action of an
external torque T1m. The angular velocity is X1m and for this axisymmetric motion there is no induced stresslet GS

ij as (32) is
directly satisfied. Here,
C23 ¼ a1G23 þ a2G32;

C32 ¼ a2G23 þ a1G32;
ð37Þ
and from (31)
X1 ¼
1
2
ðC32 � C23Þ: ð38Þ
The torque Ti ¼ �ijkGjk and here G23 ¼ �G32 ¼ 1
2 T1. The angular velocity X1 is then related to the torque T1 by
X1 ¼
1
2
ða2 � a1ÞT1: ð39Þ
Using the notation from the Appendix, ða2 � a1Þ ¼ CðI0 � I1Þ from (A.9) and for a prolate spheroid with k > 1,
X1=T1 ¼
3

16pla3
2

1
s3 ðks� logðkþ sÞÞ: ð40Þ
For an oblate spheroid, k < 1,
X1=T1 ¼
3

16pla3
2

1
s3 ðtan�1ðs=kÞ � ksÞ: ð41Þ
These results exactly match the results for ðlR1Þ�1 in (28) and (29).
In the next example, rotation about an axis orthogonal to the symmetry axis under an external torque induces a stresslet

response. With m aligned with the x1-axis, a torque applied parallel to the x2-axis will lead to dipole terms G13 and G31 giving
C13 ¼ b3G13 þ b6G31;

C31 ¼ b6G13 þ b4G31;
ð42Þ
in terms of the coefficients (A.1) from the Appendix. The condition (32) gives
G13 ¼ �ðb4 þ b6ÞG31=ðb3 þ b6Þ ð43Þ
and the torque, which is T2 ¼ G31 � G13 is then
T2 ¼ 1þ b4 þ b6

b3 þ b6

� �
G31: ð44Þ
The angular velocity X2 ¼ ðC31 � C13Þ=2 is
X2 ¼
b2

6 � b3b4

b3 þ b6
G31 ð45Þ
and so the torque and angular velocity are related as
X2 ¼
b2

6 � b3b4

b3 þ b4 þ 2b6
T2: ð46Þ
This relation is evaluated from (A.5) using the results for the integrals (A.6) and (A.7). For a prolate spheroid, k > 1,
X2=T2 ¼
3

32pla3
2

ð2s2 þ 1ÞI1 þ I0

k2 þ 1

� �
¼ 3

16pla3
2

ð2s2 þ 1Þ logðkþ sÞ � ks
s3ðk2 þ 1Þ

; ð47Þ
while for an oblate spheroid, k < 1,
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X2=T2 ¼
3

32pla3
2

I0 � ð2s2 � 1ÞI1

k2 þ 1

� �
¼ 3

16pla3
2

ð2s2 � 1Þ tan�1ðs=kÞ þ ks
s3ðk2 þ 1Þ

: ð48Þ
These results exactly match the results for ðlR2Þ�1 in (28) and (29).
The stresslet term GS

13 ¼ ðG13 þ G31Þ=2 is related to the angular velocity by
GS
13 ¼

b3 � b4

2 b2
6 � b3b4

	 
X2: ð49Þ
When evaluated, this expression also exactly matches the values given by Kim and Karrila [47].
The last example is the torque required to hold a particle fixed when placed in a pure straining flow. For this case, we

again align the axis of symmetry with the x1-direction, and the principal axes for the locally uniform rate of strain are in
the x1; x3-plane, making an angle of 45� to the x1-axis. The non-zero components of the rate of strain are E113 and E131 which
tend to turn the particle to align with the principal axes. We consider the torque in the x2-direction needed to keep the par-
ticle in place without rotation. Therefore, from (31) and (32),
0 ¼ 1
2
ðeC31 � eC13Þ;

E113 ¼ �
1
2
ðeC13 þ eC31Þ:

ð50Þ
As in the previous example there are just two non-zero components of the force dipole G13 and G31, which again satisfy (42).
From (50) it follows that
G13 ¼
b4 � b6

b3 � b6
G31; ð51Þ
which then implies
T2 ¼
b3 � b4

b3 � b6
G31: ð52Þ
In terms of the imposed rate of strain,
E113 ¼
b2

6 � b3b4

b3 � b6
G31 ¼

b2
6 � b3b4

b3 � b4
T2: ð53Þ
For a prolate spheroid,
b2
6 � b3b4

b3 � b4
¼ 1

2
3

16pla3
2

ð2s2 þ 1ÞI1 þ I0

s2

� �
¼ 3

16pla3
2

1
s5 ðð2s

2 þ 1Þ logðkþ sÞ � ksÞ ð54Þ
and for an oblate spheroid
b2
6 � b3b4

b3 � b4
¼ 1

2
3

16pla3
2

ð2s2 � 1ÞI1 � I0

s2

� �
¼ 3

16pla3
2

1
s3ðk2 � 1Þ

ðð2s2 � 1Þ tan�1ðs=kÞ þ ksÞ: ð55Þ
Again, these FCM results exactly match the corresponding expression in (27) and reduce to ðlR2DÞ�1 as given by (28) and
(29).

3.3. Faxén terms

The external force required to hold a spherical particle of radius a fixed in a nonuniform Stokes flow u1ðxÞ is given by
Faxén’s first law as
F ¼ �6pla u1 þ 1
6

a2r2u1
� �

o

; ð56Þ
where subscript o indicates evaluation at the particle center, see [48]. This result given in resistance form may be rewritten
as a modified mobility relation so that the velocity of a sphere subject to an external force F in the presence of an ambient
Stokes flow u1 is
V ¼ 1
6pla

Fþ u1 þ 1
6

a2r2u1
� �

o

: ð57Þ
This feature is captured by FCM through (9) to a good approximation, within 5% [20]. The exact coefficient in (57) is a2=6 as
compared to r2=2 from FCM. Similarly, Faxén’s second law for the angular velocity and torque on a sphere in a nonuniform
flow is obtained directly from (10).
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Brenner [49,46] extended Faxén’s laws to ellipsoidal particles and this result may be expressed from (16) as a mobility
relation
Vi ¼ MijFj þ u1i þ
1
3!

D2u1i þ
1
5!

D4u1i þ � � �
� �

o

; ð58Þ
where the operator D2 is defined as
D2 ¼ a2
1
@2

@x2
1

þ a2
2
@2

@x2
2

þ a2
3
@2

@x2
3

: ð59Þ
The rescaling for the three principal axes in (59) of D2 relative to a2r2 is consistent with the definition of the envelope (13)
for the ellipsoid. This result (59) may be compared to the corresponding results from (9) for FCM, obtained by substituting an
appropriate Taylor series expansion for u1. The first correction term involving D2u1 is approximated to within 5% as before
by FCM. The coefficient of 1/6 in (58) is 1=ð2pÞ in the FCM result. While FCM gives the correct functional form of (58), FCM
fails to match the coefficients of the additional higher order derivative terms. The Faxén corrections are derived on the
assumption that the ambient flow is slowly varying, on a length scale L, large compared to the particle dimension [46].
As a result these higher order derivatives should be less significant.

The Faxén relation for the angular velocity and torque in the presence of an ambient flow is similarly modified. Following
[48], the leading correction term is 1

10 ðD
2
x1Þo. The corresponding result from (10) for FCM gives a coefficient of 1

2 ð36pÞ�1=3

instead of the exact value 1
10, but matches to within 4% and has the correct functional form. Again, FCM fails to match the

coefficients of the terms involving higher order derivatives.

4. Simulation method

Where particles are suspended in a low Reynolds number flow with a confining geometry or in a flow at finite Reynolds
number it is necessary to combine the force-coupling method with a numerical flow solver. Here FCM is implemented with
the NEKTAR code, a three-dimensional spectral/hp element solver for incompressible flow [50]. The solutions to the equa-
tions of motion for the flow (1) and (2) are computed with the presence of the particles represented by the body force dis-
tribution (3). The implementation is similar to that for spherical particles [22]. Modified Jacobi polynomials form the basis
functions for the spectral elements and standard finite element hybrid meshes are used to match the fixed geometry of the
flow domain. The spatial resolution may be controlled by varying the order of the polynomials or refining the finite element
mesh. An explicit, stiffly stable time-splitting scheme is used to ensure incompressibility of the flow field and the resulting
Poisson equation for the pressure field is obtained using a preconditioned conjugate gradient method. Further details are
given by Liu [24].

The velocity of a freely moving particle is obtained from (9) and the particle position YðtÞ computed from (11) using the
same time-stepping scheme. In addition, for the ellipsoidal particles in three-dimensions, the particle angular velocity is
computed from (10) and the principal axes of the body computed from (14). Some simplifications are possible if the motion
of the particle is confined to a plane and then only an orientation angle needs to be specified.

In the following section, we compare the computational results obtained with FCM for particles fixed in the flow, or mov-
ing with a prescribed velocity, with corresponding results from fully resolved, direct numerical simulations (DNS). These lat-
ter simulations are also computed with NEKTAR but with a higher resolution and impose the exact boundary conditions on
the particle surface. A frame of reference is used in which the particle is fixed and the mesh is fitted to both the particle
geometry and the flow domain. In the simulations with FCM, the spatial resolution needed is dictated by the need to accu-
rately represent the force distribution (3). On a uniform grid, using a high-order method such as Fourier pseudo-spectral rep-
resentation, the ratio of the smallest value of r0 should exceed Dx, the grid spacing. Good results are obtained if r0 ¼ 1:25Dx,
which gives an estimate of 5.5 points to the shortest particle diameter. With just the force monopole term, r ¼ Dx gives
acceptable results and corresponds to 3.5 grid points to the shortest major axis. This is the coarsest possible resolution
and results degrade quickly below this. For a spectral element representation, where the mesh is nonuniform and a particle
may be located anywhere in the mesh, the estimate of Dx should be based on the largest spacing between collocation points
within an element.

The force-coupling method is formulated as a mobility problem, where the forces and torques on the particles are pre-
scribed and the particle velocities are then evaluated. This is in contrast to the DNS results that are obtained from a resis-
tance problem, where the velocities are specified and the forces evaluated from the simulations. In order to compare the
two, a penalty scheme is used with FCM to simulate resistance problems. For example, to calculate the external force F
and torque T required to hold a particle fixed in a flow driven by a pressure gradient, a set of simple differential equations
are formulated relating the force monopole term and antisymmetric components of the force dipole in (3) to the instanta-
neous particle velocity V and angular velocity X. These equations are
dFðtÞ
dt
¼ �k1VðtÞ; ð60Þ

dTðtÞ
dt
¼ �k2XðtÞ: ð61Þ
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The antisymmetric components of the force dipole are then given as
Gij � Gji ¼ �ijkTk: ð62Þ
Here k1 and k2 are the dimensional penalty parameters. Their magnitude controls the speed of convergence; the larger they
are the faster the convergence. However, for stability reasons, they cannot be too large. Upon convergence to a steady state
where V ¼ 0 and X ¼ 0, FðtÞ and TðtÞ become independent of time t, and the required force and torque are therefore ob-
tained. A third-order, Adams–Bashforth method is used to discretize the above equations.

The penalty scheme may be used for simple steady motion, in which case the equations are evolved over time until a
steady state is achieved. Alternatively, in a flow that is developing over time, the penalty scheme may be used as an inner
‘‘pseudo-time-stepping” scheme, applied for each time-step of the flow, until a converged state is reached. During the course
of this inner time-step, there is no change in the particle position or orientation.

A similar penalty method may be used, either directly or as an inner time-stepping procedure, to obtain the symmetric
(stresslet) components of the force dipole GðSÞij . The convergence condition is that the strain-rate eEk

ij for each particle k,
eEk
ij ¼

Z
D

1
2

@ui

@xj
þ @uj

@xi

� �
D0ðx� YkÞd3x; ð63Þ
satisfies a condition on the L2 norm and that keEk
ijk 6 � for some specified tolerance �. The differential equation for the penalty

scheme in this case may be written as
dGðSÞkij

dt
¼ k3

eEk
ij; ð64Þ
where k3 is the dimensional penalty coefficient. As is evident from (27), the torque on an ellipsoidal particle depends on both
the angular velocity and the rate of strain in the flow. Penalty methods for the torque and stresslet components of the force
dipole should be applied concurrently.

Where the external torque on the particle is known, for example for a freely moving particle with no external torque act-
ing on it, an alternative iterative procedure may be used to set the symmetric force dipole at each time level. The procedure is
described in Dance and Maxey [51] for the context of spherical particles in a Stokes flows. In summary, the flow is advanced
to an intermediate time level as u0; p0 using the equations of motion (1)–(3) and the standard NEKTAR scheme. The previous
values of GðSÞkij are used to do this. From this intermediate flow the strain-rate eEk

ij for each particle is evaluated and based on
this a first correction to the force dipole is estimated as
dGk
ij ¼

20
3

pa3
i leEk

ij; ð65Þ
where ai is the intermediate semi-axis of the particle. Then we solve the following Stokes problem for the perturbation veloc-
ity u�i :
q
@u�i
@t
¼ � @p�

@xi
þ l

@2u�i
@x2

i

þ
XN

k¼1

dGk
ij
@D0ðx� YkÞ

@xj
: ð66Þ
We use Eq. (63) to compute eEk�
ij , the strain-rate from the perturbation velocity u�i . In essence, we use these results to recal-

ibrate the estimate (65) assuming that the change in strain-rate for a particle is dominated by the stresslet applied to that
particle. For each particle, a coefficient kk is determined so as to minimize keEk

ij þ kk
eEk�

ij k. The dipole term for particle k is then
rescaled and updated as
Gk
ij þ kkdGk

ij ) Gk
ij: ð67Þ
This new estimate for the force dipole is then used and the iteration repeated until the norm of the particle strain-rate is
below the specified tolerance threshold.
5. Prescribed particle motion

In this section, we consider the flow field and fluid forces associated with a single ellipsoidal particle held fixed in a shear
flow or moving with a prescribed constant velocity in otherwise still fluid. We compare the results of FCM simulations with
corresponding fully resolved, direct numerical simulations (DNS) to determine the relative accuracy of FCM in calculating the
particle forces or the disturbance flows. Past experience from simulations of spherical particles is that particle forces and
velocities can be determined with good accuracy and that the flow away from the immediate region surrounding the particle
is well resolved [21,22]. The flow structure close to the particle is smoothed by the effective spatial filter of the force enve-
lope (13). The results in this section, for both Stokes flow and finite Reynolds number flow, show the same general features.

In the computations, values are assigned to the fluid parameters so that the density q ¼ 1 and the dynamic viscosity
l ¼ 1. We adopt a reference length scale, a ¼ 1, representative of the particle size and all length scales are specified in terms
of a.
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5.1. Settling in a vertical duct

The first example is of an ellipsoidal particle settling in a vertical channel or duct, where the horizontal cross-section is a
square with rigid side-walls located at x2=a ¼ �3:5 and x3=a ¼ �3:5. No-slip boundary conditions are applied on the fixed
side-walls while a periodic boundary condition is applied in the vertical direction for the domain 0 6 x1=a 6 16. The ellipsoid
has principal semi-axes a1 ¼ 1:5a; a2 ¼ 0:9a and a3 ¼ 1:2a. These symmetry axes of the particle are fixed and aligned with
the corresponding coordinate axes for the channel. The particle settles under a constant force due to gravity along the cen-
terline of the duct. The particle is placed initially at x1=a ¼ 7; x2=a ¼ 0 and x3=a ¼ 0 and falls in the negative x1-direction.

In the FCM simulations, a simple uniform mesh of 256 hexahedral elements is used, consisting of 16 elements in the x1-
direction and four elements in both the x2 and x3 directions. The basis functions within each spectral element consist of mod-
ified Jacobi polynomials of degree 11. This ensures that the conditions on spatial resolution for a particle in FCM are met. A
constant external force F1 is applied to the particle and to the fluid (7) and the velocity V1 determined from (9) based on the
computed flow field.

The results from DNS are obtained with a more refined mesh of 10,240 hexahedral elements. The elements accurately
represent the geometry of the ellipsoid and the duct. A fourth-order polynomial expansion is used within each spectral ele-
ment. In order to allow for the use of a fixed mesh, the simulations are done in a frame of reference in which the particle is
fixed but the side-walls of the channel move upwards at a constant velocity. This velocity is set from the final result of the
FCM simulations and the flow from the DNS is used to compute the fluid force on the particle. We, thus, compare the forces
on the particle required to achieve a specific settling velocity.

We consider first the results for a Stokes flow. The FCM results are obtained with the NEKTAR code, used as a solver for
unsteady Stokes flow and the nonlinear inertial terms in (1) are omitted. Even though the particle velocity is computed, the
particle position (11) is not updated so as to ensure a consistent neglect of inertial effects. The magnitude of the applied force
is 6p and for an isolated sphere of radius a ¼ 1 in open fluid this would result here in a terminal fall speed V1 ¼ 1:0. (For
convenience we consider F1 and V1 as positive quantities although both are negative.) The converged value for the settling
velocity of the ellipsoid is V1 ¼ 0:5481. This is used to set the upward velocity of the side-walls in the DNS. The NEKTAR code
is again used as a solver for unsteady Stokes flow. An implicit backward Euler scheme is used for the viscous terms permit-
ting larger time steps and a more rapid convergence to the final steady flow. DNS gives the value F1 ¼ 18:76. In nondimen-
sional form, the force on the particle F1=ðlaV1Þ is equal to 34.390 from FCM and 34.235 from DNS, which represents a
difference of 0.5% and is within the range of error for the numerical computations.

Fig. 1 shows the profiles for the fluid velocity components u1 and u2 as a function of x2. These profiles are taken at dif-
ferent streamwise locations x1=a in the plane x3 ¼ 0. The results of FCM are compared to DNS and we use the frame of ref-
erence of the DNS where the particle is fixed and side-walls are moving. At x1=a ¼ 7, passing through the particle center, the
FCM results agree well with DNS outside the region �1:5a2. At x1=a ¼ 8:5, tangential to particle surface, and at x1=a ¼ 10, a
distance of a1 from the surface, there is good agreement between the computed profiles for the Stokes flow.

The corresponding vorticity profiles are shown in Fig. 2, where the vorticity component x3 is shown versus x2 in the sym-
metry plane x3 ¼ 0 and the vorticity component x2 versus x3 is given for the plane x2 ¼ 0. The different streamwise locations
are the same as in Fig. 1. Along the diameters passing through the particle center, x1=a ¼ 7, the FCM simulations underes-
timate the vorticity in the flow near to the particle surface. The results of DNS show that the peak values of vorticity occur
at the surface and then drop sharply to zero inside the particle volume. FCM, on the other hand, gives a smooth transition
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Fig. 1. Fluid velocity profiles in x2 across the duct for settling ellipsoid, aligned vertically in Stokes flow. Velocities are relative to the particle: (a) u1; (b) u2.
Legend gives streamwise location, relative to center at x1=a ¼ 7, comparing DNS and FCM results.
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within the particle volume, which for FCM is an active part of the flow domain and must be accounted for in evaluating vis-
cous dissipation and other physical quantities [20]. Similar features are seen at x1=a ¼ 8:5, near to the tip of the ellipsoid,
while at x1=a ¼ 10 there is full agreement between DNS and FCM.

The settling of the particle at finite Reynolds numbers may be evaluated with the same procedures, using the full NEKTAR
code. The same meshes and spectral elements are used as for the Stokes flow. A constant force is applied in the FCM simu-
lations and the particle velocity evaluated. This velocity is then used to set the velocity of the side-walls in the DNS for mo-
tion relative to a fixed particle. In a mobility problem, typical of sedimentation, the usual Reynolds number based on particle
velocity is a derived quantity. Alternatively, a Reynolds based on the applied force may be specified directly as ReF ¼ F=lm,
where m ¼ l=q is the kinematic viscosity. In the present example, ReF ¼ 180:6 and for an isolated sphere of radius a settling
in otherwise still fluid this would correspond to a particle Reynolds number Re ¼ 2aV=m of 10.0. The FCM simulations give
V1 ¼ �4:995 and the particle Reynolds number based on the smallest semi-axis a2; Re ¼ 2a2V=m has a value of 8.99. The
nondimensional force on the particle, F1=ðlaV1Þ, is equal to 36.157 from FCM and 35.768 from DNS, which represents a dif-
ference of 1.1%

Fig. 3 shows the profiles for fluid velocity components u1 and u2 as a function of x2 in the plane x3 ¼ 0 for the frame of
reference in which the particle is fixed. These profiles are taken at different streamwise x1 locations at the particle center,
tangential to the particle tips in both the wake and ahead of particle, and at distances 2a1 from the center in both wake
and ahead of particle. At the particle center, along the diameter, the FCM and DNS profiles match outside the region
x2 ¼ �1:5a2. At the two ends of the ellipsoid there is generally good agreement in the profiles. At the tip, on the leading side,
the profiles match but there is a more noticeable difference in the wake at the tip.
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Fig. 2. Vorticity profiles for settling ellipsoid in Stokes flow: (a) x3 versus x2; (b) x2 versus x3. Legend gives streamwise location, relative to center at
x1=a ¼ 7, comparing DNS and FCM results.



3570 D. Liu et al. / Journal of Computational Physics 228 (2009) 3559–3581
It should be noted that this orientation for an ellipsoid settling under gravity is unstable at finite Reynolds number. As
illustrated in Section 6, an ellipsoid will turn to fall broadside on.

5.2. Spheroid aligned in a Poiseuille flow

The second example is for a spheroidal particle, held at a fixed position near a wall, in a Poiseuille flow between two par-
allel plane walls. The spheroid has semi-axes a1=a ¼ 2; a2=a ¼ a3=a ¼ 1 and the symmetry axis of the particle is aligned with
the streamwise x1-direction of the flow. This corresponds to an example given by Happel and Brenner [46] for a spheroidal
particle in Stokes flow and for which analytical results for the drag force are available. The flow configuration is illustrated in
Fig. 4. The particle is placed midway between the lower channel wall and the centerline of the channel. The particle center is
used as the origin for the coordinate axes and the channel walls are located at x2=a2 ¼ �3:333 and x2=a2 ¼ 10:0. No-slip con-
ditions are applied on the walls and periodic boundary conditions are applied in the spanwise direction for the region
�L3 6 x3 6 L3.

A parabolic velocity profile is generated by a pressure gradient applied to the flow and in the absence of a particle, the
fluid velocity is
Fig. 3.
Legend
u1 ¼ uoð1þ 0:3x2=a2Þð1� 0:1x2=a2Þ: ð68Þ
The reference velocity uo is the approach velocity or the fluid velocity of the undisturbed flow at the location of the particle.
The centerline velocity for this flow is ucl ¼ 1:333uo.
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Fluid velocity profiles in x2 across the duct for settling ellipsoid, aligned vertically, at ReF ¼ 181. Velocities are relative to the particle: (a) u1; (b) u2.
gives streamwise location, relative to the particle’s center, comparing DNS and FCM results.
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Fig. 4. Schematic sketch of spheroid held fixed at x ¼ 0 in a Poiseuille flow in a channel. Spheroid is midway between lower wall, x2 ¼ �d and centerline of
the channel, x2 ¼ d, with axis aligned with primary shear flow u1ðx2Þ. Periodic boundary conditions are applied in x3-direction at x3 ¼ �L3 and in x1-
direction at x1 ¼ �L; d ¼ 10a=3.
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We first summarize the results for a Stokes flow. In order to compare with the results of Happel and Brenner [46], the
channel walls should approximate infinite plane boundaries. The results given here are based on L3=a2 ¼ 20 and for a peri-
odic domain �80 6 x1=a2 6 80. The simulations using FCM are computed for a structured mesh of 2400 hexahedral ele-
ments. There are 20 elements in the x1 direction, with much smaller elements in the middle x1 ¼ 0; 20 elements in the x2

direction, with smaller elements nearer the wall at x2 ¼ �3:3333; and six elements in the x3 direction, again with smaller
elements in the middle x3 ¼ 0. The penalty method is applied to keep the particle fixed and to find the restoring force
and torque from Eqs. (60) and (61).

Once converged, the particle velocity and angular velocity are reduced to negligible levels. The results for the nondimen-
sional drag force F1=ðla2uoÞ and torque on the particle are given in Table 1. There is no lift force F2 on the particle because of
the symmetry of the Stokes flow and none is generated in the FCM simulation. When compared to an isolated spheroid held
fixed in a uniform flow u ¼ ðuo;0;0Þ, the results from the Table 7–5.1 in [46] show that the fluid drag force should be 27%
greater in the channel flow. A comparison of the results in Table 1 shows that the FCM result for F1 matches the theoretical
result within 1.5%. The computational errors in the flow field and the force estimates are in the range of 0.5–1%, as deter-
mined by comparison with a further simulation with a similar but slightly different element mesh. The size of the periodic
domain will also affect the comparison. Reducing L3 to L3=a2 ¼ 10 in the spanwise direction increases the estimated drag
force by about 5%. Tests indicate that with the chosen periodic domain the effect of domain size on the computed drag force
is no larger than the other sources of error in the computational results. For this domain, the ratio of the drag force to the
applied force on the flow, from the pressure gradient, is less than 1%.

The results of a corresponding direct numerical simulation are also given in Table 1. The simulation was based on a mesh
of 2220 hexahedral elements that resolved the geometry of the spheroid and the channel, using larger elements away from
the particle. Upon convergence, the integrated drag force on the spheroid is F1=ðla2uoÞ ¼ 28:60 and is consistent with
both the theoretical result and the result from FCM. Table 1 also lists the nondimensional fluid torque T3 on the fixed particle
in the shear flow. A positive external torque on the particle is required to prevent rotation in the clockwise sense, based on
sketch in Fig. 4. The results of Section 3 may be used to estimate the fluid torque on an isolated spheroid fixed in the shear
flow (68) at this location. This nondimensional torque T3=ðla2

2uoÞ equals �3.026. The FCM and DNS results for the torque
match to within approximately 3%. The computational errors in evaluating the torque are in the range of 1–1.5%.

Fig. 5 shows a comparison of the u1 and u2 velocity profiles versus inter-wall distance x2 in the symmetry plane x3 ¼ 0.
The Stokes flow is also symmetric about x1 ¼ 0. Upstream, or downstream, of the particle at x1 ¼ �4a2 ¼ �2a1 there is good
agreement between the FCM and the DNS results. FCM does not match the flow at the stagnation points, at the tip of the
spheroid, and here u1=uo ’ 0:1.

The flow at finite Reynolds number is computed in a smaller periodic domain with L3=a2 ¼ 5 and in the streamwise direc-
tion the channel size is �14 6 x1=a2 6 6. An inflow boundary condition is imposed at x1=a2 ¼ �14 with the flow velocity
specified as (68) and u2 ¼ u3 ¼ 0. Standard Neumann-type outflow conditions are imposed at x1=a2 ¼ 6. The Reynolds num-
ber based on the approach velocity u0 and the diameter of the spheroid 2a2 is then Re ¼ 2. The FCM simulations are based on
Table 1
Summary of fluid forces and torques on a spheroid in Stokes flow, held fixed in a plane Poiseuille flow. The particle is aligned with the flow. Differences in the
drag force relative to theory [46] are in parentheses.

Case F1=ðla2uoÞ T3=ðla2
2uoÞ

Theory 28.816
FCM 29.266 (1.56%) �4.376
DNS 28.598 (0.76%) �4.230
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a structured mesh of 1920 elements, with third-order polynomial representation in each element. The results of DNS are
based on a mesh of 2220 hexahedral elements, with fifth order polynomial representation. Table 2 provides a comparison
for the nondimensional forces and torques computed from DNS and FCM. There is good agreement for the estimated fluid
drag force component F1 and torque T3 on the particle. The lift force F2 is non-zero at finite Reynolds number, reflecting
an asymmetry of the drag force relative to the body axes and the nonalignment of the drag force with the ambient flow.
While the FCM and DNS results for F2 differ by 6%, the difference is small compared to the total drag force.

A comparison of the computed flows is shown in Fig. 6, where the contour levels for the streamwise velocity component
u1 are plotted for both FCM (top) and DNS (bottom). The contours at the inflow match and provide a reference for compar-
ison. The body shape is marked for the DNS and the local flow variation in the gap between the particle and the wall is clearly
shown. With FCM, there is no sharp representation of the particle and there is a negative flow region within the particle vol-
ume. The profiles for u1 at different streamwise locations are similar to those shown in Figs. 3 and 5. At the upstream stag-
nation point x1=a2 ¼ �2, FCM gives u1=uo ’ 0:14 while at the downstream stagnation point u1=uo ’ 0:1. Further details are
given in [24].

5.3. Tilted ellipsoid in a poiseuille flow

A more significant comparison between FCM and DNS is to examine the forces and flow associated with an ellipsoidal
particle fixed in a shear flow but inclined at an angle to the flow. In this section, we consider two examples of an ellipsoid
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Table 2
Summary of fluid forces and torques on a spheroid held fixed in a plane Poiseuille flow, with the particle aligned with the flow. Particle Reynolds number
Re ¼ 2a2uo=m is 2. Difference relative to DNS is shown as a percentage.

Case F1=ðla2uoÞ F2=ðla2uoÞ T3=ðla2
2uoÞ

DNS 34.23 2.898 �4.120
FCM 34.37 (0.4%) 3.078 (6%) �4.102 (0.4%)
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in a duct with a square cross-section. A Poiseuille flow is driven by an applied pressure gradient. In the first case the ellipsoid
is placed near a side-wall and inclined at an angle of 15� to the flow, in the second case the ellipsoid is on the centerline of the
duct and inclined at an angle of 45�. The geometry of the duct and the particle dimensions are the same as in Section 5.1.
Element meshes are set up in each case and the spectral element representation chosen so as to ensure that the correspond-
ing DNS and FCM simulations are resolved numerically.

For the first case, the particle is centered at x1=a ¼ 7 and x2=a ¼ 1:5 or a distance of 2a from the adjacent wall. The cen-
terline velocity at x1 ¼ 0 is used as the reference velocity and ucl ¼ 0:5565; the corresponding approach velocity is
uo ¼ 0:463. The results for the nondimensional drag force, lift force and torque are given in Table 3 for both Stokes flow
and a finite Reynolds number, Re ¼ 3:9, based on the duct size, 7a and ucl. There is reasonable agreement for the forces
and torques. At finite Reynolds number, the drag and torque have changed only slightly while the lift force is reduced by
Fig. 6. Spheroid held fixed at x ¼ 0 in Poiseuille flow at Re ¼ 2. Comparisons of the u1 fluid velocity contours in the plane x3 ¼ 0: FCM, top; DNS, bottom.
Flow is from left to right.



Table 3
Summary of forces and torques on an ellipsoidal particle held fixed in a Poiseuille flow in a square duct, with the ellipsoid tilted at 15� to the flow. Results are
for Stokes flow, Re ¼ 0 and for Re ¼ 3:9. Results for FCM-MT omit the stresslet term. Difference relative to DNS is shown as a percentage.

Case Re F1=ðlauclÞ F2=ðlauclÞ T3=ðla2uclÞ

DNS 0 35.34 2.182 5.517
FCM 0 37.69 (7%) 2.256 (3%) 5.857 (6%)
DNS 3.9 35.38 1.114 5.325
FCM 3.9 37.84 (7%) 1.092 (2%) 5.591 (5%)
FCM-MT 3.9 38.05 (8%) 1.211 (9%) 6.382 (20%)
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about one half. Also at finite Reynolds number, FCM results are given where the stresslet term is omitted and only the torque
and force monopole terms are included. Even here, the force estimates are acceptable.

Fig. 7 compares the contours for the streamwise fluid velocity component u1 computed from DNS and FCM simulations.
The figure shows the position of the particle and its orientation relative to the flow, from bottom to top as plotted. Note from
the DNS results that the u1 contours close to the particle are not aligned with the body axes. Outside of the particle domain
the contours from DNS and FCM are approximately aligned. As in Fig. 6, the particle is not clearly defined by FCM and the
induced flow inside the particle volume is negative. The contours match at the inflow and these, together with the outer two
closed contours around the ellipsoid, show the differences in the flow within the gap region.

This reversed flow within the particle volume is an inherent feature of the smoothly varying velocity and vorticity rep-
resentation of FCM even for spherical particles. This is noted in more detail in [20,21]. The interior flow is similar in qual-
itative terms to a Hill’s spherical vortex. Such a vortex is seen physically when a spherical drop of liquid, held in shape
by surface tension, moves with a constant velocity V through a fluid in a Stokes flow. The interior circulation is modified
by the ellipsoidal shape of the particle.

In the second case, the ellipsoid is centered in the middle of the channel at x1=a ¼ 7 and x2 ¼ x3 ¼ 0, tilted at an angle of
45� to the flow. The centerline velocity at x1 ¼ 0 is again used as the reference velocity and ucl ¼ 0:493 for the same pressure
gradient as in the previous case. Results for both Stokes flow and finite Reynolds flow, Re ¼ 3:45, show good agreement be-
tween the DNS and FCM results for both forces and torques. In Stokes flow, the torque is exactly zero because of the sym-
metry of the flow and this is reproduced by FCM while there is a small error in the DNS results. Fig. 8 compares the contours
for the fluid velocity component u1 in the Stokes flow. At the center of the channel the flow around the particle is less influ-
Fig. 7. Ellipsoid, inclined at 15� angle, held fixed in a finite Re Poiseuille flow in a duct, x1-axis is vertical. Comparisons of contours for streamwise fluid
velocity component u1 in the plane x3 ¼ 0: left, FCM; right, DNS. Note from the DNS results that the u1 contours are not aligned with the body axes of the
ellipsoid.



Fig. 8. Comparisons of contours for streamwise fluid velocity u1 in plane x3 ¼ 0, ellipsoid at 45� angle in Stokes flow: left, FCM; right, DNS. The x1-axis is
vertical. Note from the DNS results that the u1 contours are not aligned with the body axes of the ellipsoid.
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enced by the walls. There is again a negative velocity inside the particle volume, inherent to the FCM results, but outside the
particle domain the contours from FCM match those from DNS except very close to the surface. As in the previous example,
the u1-contours from DNS are not aligned with the axes of the ellipsoid or the body shape.

6. Free motion of ellipsoidal particles

In this section, we consider briefly some examples of the dynamics of freely moving ellipsoidal particles suspended in a
fluid. The first example is for sedimentation under gravity in a vertical channel, where a pair of particles interact hydrody-
namically as they fall side by side. So as to demonstrate the interaction of ellipsoidal particles, we used FCM to compute the
motion of two particles whose semi-axes are a1 ¼ 1:5a; a2 ¼ 0:75a and a3 ¼ 1:0a. The particles are placed in a vertical chan-
nel with rigid parallel planar side-walls at x2=a ¼ �8. The x1-axis is aligned with the vertical and periodic boundary condi-
tions are applied for both the x1-direction, 0 6 x1=a 6 16, and the spanwise x3-direction, �5 6 x3=a 6 5. The net force of
gravity on each particle is equal to F1 ¼ �60p, so that the corresponding force Reynolds number ReF ¼ 188:5. Initially, the
particles are introduced either side of the centerline of the channel at x2 ¼ �2:5 and in the plane x3 ¼ 0 with the long axis
vertical and shortest axis normal to the side-walls. The flow is initialized by computing first the corresponding Stokes flow
for the two particles fixed at these positions and orientations. Following this, at t ¼ 200, the particles are released and the full
Navier–Stokes equations are solved for the finite Reynolds number flow and to determine the particle motion.

Fig. 9 shows a sketch of the trajectories and the orientations of the two ellipsoidal particles following their release. There
is an initial transient stage before a regular periodic motion develops. The particles quickly rotate from their initial vertical
alignment to a horizontal alignment. Indeed, a separate simulation of a single particle in the channel shows that it will turn
to fall broadside on at a velocity V1 ¼ �8:2, as seen similarly in the results of Pan et al. [39]. The two particles falling side by
side each create a shear flow causing the other particle to rotate. Fig. 10 shows the temporal evolution of the velocity and the
angular velocity of each particle. Particle 1, on the left of Fig. 9, rotates in a clockwise sense and X3 > 0. As the particles fall,
they drift apart as the direction of the settling velocity changes with the particle orientation. The shear flow interactions of
the particles weaken as they separate and as their orientation continues to change the particles then drift back towards each
other. By t ¼ 220 a clear periodic cycle has developed. The average vertical fall speed of the particles is greater than it would
be for a single particle. The channel walls have a secondary effect on this observed response as the particles are relatively
further from the walls and closer to the centerline. This is in contrast to the motion of a single ellipsoid settling in a narrow
tube considered by Swaminathan et al. [40].

The second example is for the motion of a single, neutrally buoyant ellipsoid suspended in a plane Poiseuille shear flow.
Segre and Silberberg [52], using a Poiseuille flow through a circular tube, demonstrated experimentally that small, neutrally
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Fig. 10. Two ellipsoidal particles settling vertically, side by side, in a channel: the velocity components (left) and the angular velocity components (right)
versus time.

Fig. 9. The sketch of the trajectories and orientations of the two ellipsoidal particles settling side by side in a vertical channel. The scale for the vertical x1-
distance is compressed relative to the horizontal x2 separation. Particle 1 is on the left, seeded at x2=a ¼ �2:5; x3 ¼ 0; particle 2 is seeded at
x2=a ¼ 2:5; x3 ¼ 0.
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buoyant, rigid spherical particles will migrate laterally to a certain equilibrium position at about 0.6 tube radii from the axis,
regardless of the sphere’s initial radial position. Theory, developed principally by Schonberg and Hinch [53] and by Asmolov
[54], shows that due to the curvature of the velocity profile and the variations of the shear rate across the tube or planar
channel that even a neutrally buoyant particle will tend to lag the corresponding fluid velocity at the particle center. This
slip velocity results then in a lateral lift force due to fluid inertia effects and there are specific stable equilibrium points
where the force vanishes at locations between the centerline and the wall. The precise location depends on the flow Reynolds
number and the ratio of the particle diameter to the tube diameter or channel width. These results have been substantiated
by results of numerical simulations [55,56] and by experiments [57].

The study of similar effects for ellipsoidal particles is limited. There is the additional parameter of the aspect ratio of the
particle and unlike a sphere the hydrodynamic response of an ellipsoid will change as it rotates in the shear flow. Some re-
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sults on the motion of two-dimensional elliptic particles in planar Poiseuille flow are given by Qi et al. [36] based on numer-
ical simulations with LBM. We show briefly in Fig. 11 some preliminary results for the motion of a three-dimensional ellip-
soid in a channel flow obtained from simulations with FCM.

A plane Poiseuille flow is established by applying a pressure gradient to the fluid between planar rigid walls at x2=a ¼ �8.
Periodic boundary conditions are applied in the other two directions, with the spanwise direction corresponding to
�5 6 x3=a 6 5 and the streamwise direction 0 6 x1=a 6 14. The centerline velocity of the flow is ucl ¼ 4:0 and the parabolic
profile is u1 ¼ uclð1� x2

2=64Þ, giving a Reynolds number for the channel flow Re ¼ 32 based on ucl and the channel half-width.
A neutrally buoyant ellipsoid with semi-axes a1 ¼ 1:5a; a2 ¼ 0:75a and a3 ¼ a is introduced into the flow near to the upper
wall at x2 ¼ 6 with the axes of the particle aligned with channel axes. The simulation uses a nonuniform mesh of 728 hexa-
hedral elements. Fig. 11 shows the temporal evolution of the particle position as it drifts in the x2-direction form the initial
position at x2 ¼ 6 towards a position closer to the centerline at x2 � 3. Also shown are the corresponding variations in the
angular velocity X3 of the particle. The changing orientation of the particle causes it to fluctuate laterally as it drifts. For
the present configuration, if the flow Reynolds number is increased the equilibrium position is closer to the wall, consistent
with the two-dimensional results [36].
7. Conclusions

In this paper, we have presented the extension of the force-coupling method to include general ellipsoidal particles. This
is achieved by a rescaling of the Gaussian envelope for the particle and using the generalized form (13). In all other respects
the method is unchanged and specifically the relations between the envelope scales r and the particle dimensions are the
same as for spherical particles. Analysis shows that the FCM results for the general mobility tensor of a single spheroid in
Stokes flow are exact and that the Faxén corrections are approximately correct. The numerical implementation of these
methods is discussed and specific comparisons made for prescribed particle motion with full direct numerical simulations
for both Stokes flows and low, but non-zero, Reynolds numbers. In general, there is good agreement for the relations be-
tween particle forces and torques and the corresponding velocities and angular velocities. As with spherical particles, the
details of the flow close to the particle surface are not resolved but are well represented elsewhere. Detailed comparisons
of streamwise velocity profiles are given in Sections 5.1 and 5.2 for different flow examples and these illustrate the good
agreement between the results obtained from DNS and with FCM. The more qualitative contour plots in Section 5.3 for
the streamwise velocity components show again that outside the particle domain the results from DNS and FCM correspond,
noting that the u1-contours are not aligned with the body axes if the particle is not aligned with the flow.

In terms of computational effort, FCM is an effective method for simulating particle motion. All the simulation results pre-
sented were computed on a single-processor Linux workstation using the NEKTAR code. The direct numerical simulations
required a larger, more detailed mesh fitted to the body geometry. These latter simulations were too large to be accommo-
dated on a standard workstation and had to be computed using a parallel computer. For example, the FCM results of Section
5.3 for the ellipsoid tilted at 15� to the flow required 384 hexahedral elements and took 166 s per time-step on a single Pen-
tium IV processor. The corresponding DNS required 2100 elements and using 64 processors of an IBM SP3 computer took
26 s per time-step, a factor of 10 increase in computational effort. The relative computational costs for FCM relative to
DNS have been discussed previously by Dong et al. [58].
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The cost of including more particles with FCM are relatively modest and is no greater if the particles move freely in the
flow. There is an initial overhead cost to implement FCM for the particle phase but thereafter the computational effort in-
creases linearly with the number of particles, as noted in Section 1. Among the previously reported applications of FCM
to flows in random suspension of spherical particles are the studies of platelet aggregation in blood flow by Pivkin et al.
[59] and of bidisperse suspensions in a shear flow by Abbas et al. [60]. In the latter study up to 3200 particles, corresponding
to a volume fraction of 12%, were simulated with the full FCM and including short-range viscous lubrication forces and par-
ticle contact forces. The inclusion of these short-range forces potentially could increase the computational cost to scale with
N2

P , where NP is the number of particles. Standard, linked-list methods and other procedures reduce these costs significantly
[61]. A preliminary study with a suspension of 100 oblate spheroids in a Poiseiulle flow shows the same level of relative com-
putational costs as for spherical particles although the computation of contact forces is more complex for ellipsoids.1

The extension of FCM to ellipsoidal particles has been validated for the limit of Stokes flow and has been demonstrated for
several examples in finite Reynolds number flows. Previous work [22,24], has demonstrated the validity of FCM for spherical
particles in a range of contexts for particle Reynolds numbers up to 12. Useful results may still be obtained for Reynolds
numbers up to 20 in certain situations but beyond this flow separation may occur and (3) is not sufficient to represent
the flow complexity. In the example of an isolated sphere, rotating about an axis, the secondary flow generated at finite Rey-
nolds number is strongly dependent on the near-surface features of the primary flow and this is only partially resolved by
FCM [62]. The important feature of FCM is that it is not limited to Stokes flow conditions, as is the case for standard multipole
methods or boundary integral methods, and is able to describe low but finite Reynolds applications.

The present results also point to the limitations of using a single force monopole and force dipole combination to repre-
sent an ellipsoidal particle in a general complex shear flow, specifically as the particle aspect ratio increases. This is evident
even in Stokes flow as seen from the form of the Faxén corrections (59). The shortest minor axis of the particle may be small
compared to the length scale of the flow variation but the major axis may not. With aspect ratios, for example, in the range of
0.5–2, the methods and results have good general accuracy. The numerical resolution required for FCM is set by the smallest
semi-axis of the particle. The envelope (13) provides a fairly sharp definition of the particle in this direction. In the direction
of the largest semi-axis though the envelope gives a shallower, smoother representation. The spatial resolution required for
FCM means that there would be 15–18 grid (or collocation) points along the major axis for a prolate spheroid of aspect ratio
3:1. This available resolution along the major axis though would not be fully utilized. A more effective approach for an elon-
gated particle or fiber would be to use a distribution of FCM multipoles along the body axis to represent the motion in a non-
uniform or unsteady flow. This is the approach taken for example in a recent paper describing artificial microswimmers [63].
There are inherent limitations to the use of a multipole representation centered in the particle to describe flow details at the
surface, where this is far from the center. Slow convergence means that the inclusion of higher order multipole terms does
little to remedy this and is more costly to implement.
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Appendix

The components of the tensor Aijkm are evaluated from (34) for the specific case where the symmetry axis m is parallel to
the x1-axis and the components are referred the principal axes of the spheroid. The components are then related to the gen-
eral coefficients a1—a6 in (35), making use of the conditions (36). In doing so, it is convenient to introduce intermediate
coefficients:
1 K. Y
A1111 ¼ b1 ¼ a1 þ 2a2 � a4;

A2222 ¼ A3333 ¼ b2 ¼ a1 þ 2a2;

A1122 ¼ A1133 ¼ b3 ¼ a1 þ a5;

A2211 ¼ A3311 ¼ b4 ¼ a1 þ a3;

A2233 ¼ A3322 ¼ b5 ¼ a1;

A1212 ¼ A1313 ¼ b6 ¼ a2 þ a4;

A2323 ¼ ðb2 � b5Þ=2 ¼ a2:

ðA:1Þ
The evaluation procedure is similar to that used to determine the mobility coefficients in (25), reducing the results to inte-
grals in t ¼ k1=k.

The value of A1111 is
eo, Private communication, 2008.
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b1 ¼ �
1

16p3=2lr3
2

Z 1

�1

ð1� t2Þt2

ð1þ ðk2 � 1Þt2Þ3=2 dt: ðA:2Þ
This may be expressed in terms of the standard integrals
I0 ¼
Z 1

�1

1

½1þ ðk2 � 1Þt2�3=2 dt;

I1 ¼
Z 1

�1

t2

½1þ ðk2 � 1Þt2�3=2 dt;

I2 ¼
Z 1

�1

t4

½1þ ðk2 � 1Þt2�3=2 dt;

ðA:3Þ
and the constant C ¼ 1=f32p3=2lr3
2g as
b1 ¼ �2CfI1 � I2g: ðA:4Þ
The other coefficients may be found in the same manner as
b2 ¼ �C
1
4

I0 þ
1
2

I1 �
3
4

I2

� �
;

b3 ¼ �CfI0 � 2I1 þ I2g;
b4 ¼ �CfI1 þ I2g;

b5 ¼ �C
3
4

I0 �
1
2

I1 �
1
4

I2

� �
;

b6 ¼ CfI1 � I2g:

ðA:5Þ
As a result of (6) the constant C ¼ 3=ð16pla3
2Þ.

With the aspect ratio k ¼ a1=a2 ¼ r1=r2, the value of the integrals (A.3) are
I0 ¼
2
k
;

I1 ¼ �
2
s3

s
k
� logðkþ sÞ

	 

;

I2 ¼
1
s5 ðk

2 þ 2Þ s
k
� 3 logðkþ sÞ

	 

;

ðA:6Þ
for prolate spheroids, k > 1, with s2 ¼ jk2 � 1j. For oblate spheroids, k < 1,
I0 ¼
2
k
;

I1 ¼
2
s3

s
k
� tan�1ðs=kÞ

	 

;

I2 ¼
1
s5 ðk

2 þ 2Þ s
k
� 3 tan�1ðs=kÞ

	 

:

ðA:7Þ
In addition, the integrals are related and
I0 � 3I1 � 2s2I2 ¼ 0 for k > 1;

I0 � 3I1 þ 2s2I2 ¼ 0 for k < 1:
ðA:8Þ
The coefficients a1—a6 in (35) are given by
a1 ¼ C
1
4

I2 þ
1
2

I1 �
3
4

I0

� �
;

a2 ¼ C
1
4

I2 �
1
2

I1 þ
1
4

I0

� �
;

a3 ¼ C �5
4
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3
2
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3
4

I0

� �
;

a4 ¼ C �5
4

I2 þ
3
2

I1 �
1
4

I0

� �
;

a5 ¼ C �5
4

I2 þ
3
2

I1 �
1
4

I0

� �
;

a6 ¼ C
35
4

I2 �
15
2

I1 þ
3
4

I0

� �
:

ðA:9Þ
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